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Abstract 

Distributions of many variables of interest in developed economic and financial markets, 

including income and wealth, exhibit heavy tails as in the case of Pareto or power laws. Many 

commonly used income and wealth inequality measures are very sensitive to extremes and 

outliers generated by these distributions due to their heavy-tailedness properties. This paper 

focuses on robust analysis of distributions and heavy-tailedness characteristics for data on income 

and wealth for the World, Russia and post-Soviet Central Asian economies. Among other results, 

it provides robust estimates of heavy-tailedness parameters for income and wealth in the markets 

considered and their comparisons with the benchmark values that are well-established for 

distributions of these variables in developed economies. The paper further provides applications 

of the obtained empirical results to inference on inequality measures and discusses their 

implications for market demand and economic equilibrium.  
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1. INTRODUCTION 

As discussed in numerous studies, economic growth and many other key economic 

variables, including consumer demand, are greatly affected by income and wealth inequality (see, 

among others, the review in Ibragimov and Ibragimov, 2007, Quadrini, 2008, and Appendix MD 

and references therein).  

 Empirical analyses on income inequality, poverty and market concentration and many 

other problems in economics and finance often face the difficulty that the data is heterogeneous 

or heavy-tailed in some unknown fashion. Heterogeneity and heavy-tailedness presents a 

challenge for applications of standard statistical and econometric methods. In particular, as 

pointed out by Granger and Orr (1972) and in a number of more recent studies (see, among 

others, Ch. 7 in Embrechts et al., 1997, Ibragimov, 2009, and references therein), many classical 

approaches to inference based on variances and (auto)correlations such as regression and spectral 

analysis, least squares methods and autoregressive models may not apply directly in the case of 

heavy-tailed observations with infinite second or higher moments.  

More specifically, heavy-tailedness and heterogeneity complicate application of standard 

approaches to statistical inference and many commonly used measures of inequality, poverty and 

concentration (e.g., Cowell and Flachaire, 2007, Davidson and Flachaire, 2007, Gabaix, 2008, 

2009, and the review in Ibragimov and Mueller, 2010). Some studies in the literature (e.g., 

Mandelbrot, 1997, Ch. E7), for instance, have criticized the use of one of often used measures of 

concentration, the Herfindahl-Hirschman index (HHI), by arguing that its distributional limits can 

be random. This holds whenever the firm sizes have heavy-tailed distributions that follow the 

empirically documented Zipf's laws (see Section 3). One can show that similar lack of 

consistency and non-Gaussian asymptotics under heavy-tailed observations also hold for a 

number of inequality and risk measures that have a structure similar to that of the HHI, such as 

the coefficient of variation and Sharpe ratio. In addition, the applicability of these measures 

becomes problematic under dependence and heterogeneity in the data generating process.  

Several recent works in the literature have emphasized robustness as an important aspect in 

the choice of measures used in assessing economic inequality and estimation and inference 

methods for them (see, among others, Cowell and Flachaire, 2007, Davidson and Flachaire, 2007, 
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and references therein).2 The interest in robust inequality assessment is motivated, in part, by 

sensitivity of many income inequality measures to changes in different parts of the underlying 

income distribution, including sensitivity to extremes and outliers. The analysis of the effects of 

outliers on economic inequality measures is directly related to the study of heavy-tailedness 

phenomena and models for income and wealth distributions that exhibit heavy tails as in the case 

of commonly observed Pareto or power laws (see, for instance, Embrechts et al., 1997, Gabaix, 

2008, 2009, Ibragimov, 2009, and references therein). Heavy-tailed random variables (r.v.'s) X>0 

with distribution that has power tails satisfy  

     ζ−> xC~)xX(P ,                                                        (1) 

as ∞→x , with the tail index ζ>0 (here and throughout the paper, f(x) ~ g (x) means that  

))(o)(x(g)x(f 11 += as ∞→x ).3  The tail index ζ characterizes the heaviness (the rate of 

decay) of the tails of power law distribution (1) (see Section 3). An important property of r.v.'s X 

satisfying a power law with the tail index ζ is that the moments of X are finite if and only if their 

order is less than ζ: ∞<pEX  if and only if p<ζ.  

 Empirical studies of income and wealth indicate that distributions of these variables in 

developed economies typically satisfy power laws (1) with the tail index ζ  that varies between 

1.5 and 3 for income and is rather stable, perhaps around 1.5, for wealth (see, among others, 

Gabaix, 2008, 2009, and references therein). This implies, in particular, that the mean is finite for 

income and wealth distributions (since ζ>1). However, the variance is infinite for wealth (since ζ 

≈1.5<2) and may be infinite for income (if ζ ≤2). In addition, since their tail indices are smaller 

than 3, income and wealth distributions have infinite third and higher moments.  

 The problem of infinite variance in wealth and income distributions is important because, 

as indicated before, it may invalidate or make problematic direct applicability of standard 

inference approaches, including regression analysis and least squares methods. On the other hand, 

the fact that the first moments of the distributions are finite is important and encouraging because 

                                                            
2 See also Ibragimov (1997) and Ibragimov, Ibragimov and Sirajiddinov (2008) for some methods of indirect 
inference for income distributions and income inequality measures motivated by the related problems of missing 
data. 

3More generally, one may require that  ζ−> xCl(x)~)xX(P , where l(x) is a slowly varying function at 
infinity: l(cx)/l(x) →1, as x→∝, for all c>0. Most of properties and inference methods in the latter models are the 
same as in models (1). 
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it points to optimality of diversification and robustness of a number of economic models for the 

variables considered (see Ibragimov, 2009, and the discussion in Section 3). 

 As discussed in Section 3, many recent studies argue, using the data for developed 

economies, that the tail indices ζ  typically lie in the interval (2, 4) for many financial returns and 

exchange rates.  Among other results, for instance, Gabaix et al. (2003, 2006) present and discuss 

empirical estimates that support heavy-tailed distributions with tail indices ζ≈3 for financial 

returns on many stocks and stock indices in developed markets. These results imply that, in 

contrast to income and wealth distribution, financial returns have finite variance (since ζ>2). 

Similar to the case of income and wealth distributions, financial returns have infinite fourth 

moments (ζ<4) and may have infinite moments of order 3 (if ζ ≤3). 

  

2. RESEARCH OBJECTIVES 

 The discussion in the previous section illustrates that reliable inference on income and 

wealth distributions and their heavy-tailedness properties is crucial for estimation of inequality 

measures. In turn, robust inequality measurement is of great importance for the analysis of the 

effects of income and wealth disparity on economic markets and their development, including the 

changes in demand curves and the implied market equilibria over time (see the results and 

discussion in Ibragimov and Ibragimov, 2007, and Appendix MD). 

 Emerging economic markets are likely to be more volatile than their developed counter-

parts and subject to more extreme external and internal shocks. The higher degree of volatility 

suffered by these economies leads to the expectation that heavy-tailedness properties and 

distributions of key variables in these markets, including income and wealth, may be different 

from those in developed economies. 

 This paper focuses on robust analysis of distributions and heavy-tailedness characteristics 

for data on income and wealth for the World, Russia and post-Soviet Central Asian economies. 

Among other results, using the recently proposed robust tail index inference methods, the paper 

provides  estimates of heavy-tailedness parameters ζ  for income and wealth in the markets 

considered and their comparisons with the benchmark values ζ∈(1.5, 3) and ζ ≈1.5 that are well-
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established for distributions of these variables in developed economies (Sections 4-6).4 The paper 

further provides applications of the obtained estimation results to inference on income inequality 

(Section 7). We also discuss applications of the empirical results in the analysis of the relation 

between inequality and consumer demand and their implications for economic equilibrium 

(Appendix MD). 5  

 Our results point out to interesting and somewhat surprising similarities between the 

distributional characteristics and heavy-tailedness properties of income and wealth distributions 

in some of the economies considered and those in the developed markets. For instance, the 

estimates of the tail index ζ of income distribution in Russia are largely in agreement with the 

benchmark interval ζ∈(1.5, 3) for the income distribution in developed economies. This suggests 

that, apparently, the income distribution in Russia has achieved its equilibrium in terms of the 

likelihood of re-distributions and large fluctuations. Furthermore, the estimates indicate that the 

tail index is greater than 2 and, thus, the distribution has finite variance. Similar conclusions are 

obtained from the point estimates of the tail index of income distribution in Kazakhstan and from 

some of the results for Kyrgyzstan. At the same time, the estimates for Kyrgyzstan indicate that 

the income distribution in this country tends to be more heavy-tailed than in the case of the 

Kazakhstan and Russia.  

 Similar conclusions also hold for comparisons of the semiparametric estimates of the Gini 

coefficient G of inequality in the upper tails of the income distribution in the economies 

considered with the benchmark interval G∈(0.2, 0.5) implied by the tail index estimates in the 

interval (1.5, 3) in developed markets. 

 The paper is organized as follows. Section 3 provides a review of the related literature on 

heavy-tailedness in economic and financial markets. Section 4 discusses inference methodology 

used in the analysis. Section 5 reviews the datasets used in the study and their sources. Section 6 
                                                            
4 Related results recently obtained in Ibragimov, Ibragimov and Kattuman (2009) indicate that the tail indices for 
exchange rates in emerging markets differ from the values  )42( ,∈ζ  in developed economies and tend to be 
smaller than the latter. 

5 Together with the results in Ibragimov and Ibragimov (2007) and Appendix MD, the estimates of heavy-tailedness 
parameters and inequality measures may also be used for inference on the volume of unofficial economy using the 
data on luxury goods consumption by households and estimates of elasticity of demand on luxuries (see the 
discussion in Section 8). 
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presents and discusses the main estimation results obtained in the paper. Section 7 discusses 

implications of the empirical results for income inequality measures. Section 8 makes some 

concluding remarks and reviews the suggestions for the further research. Appendices A and B 

contain the tables and diagrams on the empirical results obtained in the paper. Appendix WF 

provides a review of the Weber-Fechner law and the related size-rank regressions applied in the 

empirical analysis. Finally, Appendix MD provides new results on the relation between 

inequality and demand and discusses the implications of the empirical results on heavy-tailedness 

and inequality for market demand and economic equilibrium. 

 

3. HEAVY TAILS IN ECONOMIC AND FINANCIAL MARKETS 

The last four decades have witnessed rapid expansion of the study of heavy-tailedness 

phenomena in economic and financial markets. Following the pioneering work by Mandelbrot 

(1963) (see also Fama, 1965, and the papers in Mandelbrot, 1997), numerous studies have 

documented that time series encountered in many fields in economics and finance are typically 

heavy-tailed. In models involving a heavy-tailed positive r.v. X it is usually assumed that the 

distribution of X has power tails (1).  

 The parameter ζ  in (1) is referred to as the tail index, or the tail exponent, of the 

distribution of X. It characterizes the degree of heavy-tailedness in power law (1) and the 

likelihood of occurrence of extreme observations and outliers in this distribution. As indicated in  

the introduction, for power moments of X one has: ∞<pEX  if p<ζ and ∞=pEX  if p ≥ ζ. In 

particular, the variables X that follow (1) with ζ≤2 have infinite second moments: ∞=2EX . If (1) 

holds with ζ≤1, then the first moment of X is infinite: ∞=EX . The following is a sample of 

estimates of the tail index ζ  for (the absolute values of) returns on various stocks and stock 

indices: 3<ζ<5 (Jansen and de Vries, 1991), 2<ζ<4 (Loretan and Phillips, 1994), ζ≈3 (Gabaix et 

al., 2003, 2006). In the case ζ=1, power law distributions (1) are commonly referred to as the 

Zipf's law. Zipf's law distributions with ζ=1 have been found to hold for firm sizes (see Axtell, 

2001, and Zhang,  Chen and Wang, 2009) and city sizes (see Gabaix, 1999, for the discussion and 

explanations of the Zipf's law for cities). 

 Empirical results on power laws for income and wealth indicate that distributions of these 

variables in developed markets typically satisfy (1) with the tail index ζ  that varies between 1.5 
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and 3 for income and is rather stable, perhaps around 1.5, for wealth (see Gabaix, 2008, 2009, 

and references therein).   

 As discussed in the introduction, the above tail index estimates imply, in particular, that 

the variances of financial returns in developed markets are finite; however, the returns typically 

have infinite fourth moments. In contrast, remarkably, wealth distributions have infinite variance, 

and the variance may also be infinite for income. Moreover, the distributions of income and 

wealth may even have infinite moments of order smaller than two.  According to the estimates,  

the values ζ∈(1.5, 3) and ζ=1.5 are the critical boundaries between the orders of finite and infinite 

moments of income and wealth distributions in developed economies.  

 Besides the robustness properties of many empirical inequality, concentration and risk 

measures discussed in the introduction, heavy-tailedness, extremes and outliers may have 

dramatic effects on their population analogues, as in the case of the value at risk (VaR) analysis 

and the properties of a number of economic models (see Ibragimov, 2009, and references 

therein). In particular, as discussed in Ibragimov (2009) and Ibragimov, Jaffee and Walden 

(2009), diversification is typically preferable in the value at risk framework for moderately 

heavy-tailed  risks with tail indices ζ > 1. In contrast, diversification may increase portfolio VaR 

for extremely heavy-tailed risks with tail indices ζ < 1 and infinite first moments.  

 The analysis of diversification for heavy-tailed variables directly relates to modeling and 

analysis of inequality using majorization relation and Lorenz curves (see, among others, Marshall 

and Olkin, 1979, the review in Ibragimov and Ibragimov, 2007, Appendix MD and references 

therein).  The results in Ibragimov and Ibragimov (2007) and their extensions in Appendix MD 

provide sufficient conditions under which changes in income inequality lead to an increase or 

decrease in the market demand elasticities. The conditions are satisfied for individual demand 

functions commonly used in economic models, in particular, for the typical demand functions on 

luxury goods and necessities. 

 Importantly, the theoretical results in Ibragimov and Ibragimov (2007) help to explain, to 

some extent, the empirical results on consumer behavior reported in previous studies. The 

empirical study in Unnevehr and Khoju (1991) suggests that greater equality in income 

distribution reduces the average meat consumption. On the other hand, according to the empirical 

results in Pinstrup-Andersen and Caicedo (1978), reduction in income inequality has a 

considerable positive impact on the demand for food commodities, including meat. Senauer 
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(1990) reports that the lower-income households are more price responsive for the consumption 

of rice in developing countries. However, the analysis of the U.S. data on food commodities and 

household poverty status in Park, Hocomb, Raper and Capps (1996) provides estimates for the 

own-price elasticities that are similar between the income strata. Disparities in the above 

estimation results in the literature indicate that further empirical and theoretical analysis of the 

effects of income inequality on demand is highly desirable and provide further motivation for the 

analysis in the paper. 

 

4. METHODOLOGY 

Several approaches to inference about the tail index ζ of heavy-tailed distributions are 

available in the literature. The two most commonly used ones are Hill's estimator and the OLS 

approach using the log-log rank-size regression. 

Let X1, X2, …, XN>0 be a sample from a population satisfying power law (1) (e.g., a sample 

of household income or wealth levels). Further, let, for n<N,  

                   X(1)≥X(2)≥…≥X(n) ≥X(n+1)                                      (2) 

be decreasingly ordered largest values of observations in the sample (that is, n+1 upper order 

statistics for the sample). 

 Hill's estimator Hillζ
)

 of the tail index ζ  is given by (see, among others, Embrechts et al., 
1997, Drees et al., 2000, Gabaix, 2008, and references therein), 
 

     .
XlogXlog

n
n

t
)n()t(

Hill

∑
=

+−
=

1
1 )]()([

ζ
)

                                  
(3)  

The standard error of the estimator is HillHill n
.e.s ζ

)1
= . The corresponding 95%-confidence 

interval for the true tail index ζ  is thus given by 
  

    .
n

.,
n

.
HillHillHillHill )961961( ζζζζ
))))

+−
                                                

(4)  

Hill's estimator may be simply motivated by the problem of estimating the parameter ζ  for the 

Pareto distribution where (1) holds exactly for all values x greater than a certain threshold mx :  

     
ζ−=> xC)xX(P                                                         (5) 
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for all  x≥ mx  , where .xC m
ζ=  It is easy to see that, for a r.v. X  satisfying (5), the log-transform 

)x/X(logY m=  follows an exponential distribution with the parameter ζ: 

ye)yY(P ζ−=>  for all y≥0. Thus .
)x/Xlog(EEY m

11
==ζ  By the method of 

moments, this leads to estimation of the heavy-tailedeness parameter  ζ, in the case where mx  is 

known, by the inverse of the sample mean ∑
=

=
n

t
tn Y

n
Y

1

1
 of the log-transforms 

)x/X(logY mtt =  for observations nX...,,X,X 21  from distribution (5):  

     .
xlogXlog

n
Y
n

n

t
mt

n ∑
=

==

1
)](-)([

ζ
)

                                      

(6) 

It is easy to see that ζ
)

 is also the maximum likelihood estimator of  ζ  in (5). Similarly, the 

vector )ˆ,X( m ζ
)

, where tn,...,tm XminX
1=

=
)

 and  

     
∑

=

−
= n

t
mt XlogXlog

n

1
)]()([

)

)
ζ ,                        (7) 

is the maximum likelihood estimator of ),x( m ζ in the case of unknown mx .  

 In addition to Hill's estimates of the tail indices of income and wealth distributions, we 

also provide tail index estimates obtained using robust modifications of log-log rank-size recently 

developed in Gabaix and Ibragimov (2011). These estimation procedures use the optimal shifts in 

ranks and the correct standard errors obtained in Gabaix and Ibragimov (2011). 

 It was reported in a number of studies that inference on the tail index using Hill's 

estimator suffers from several problems, including sensitivity to dependence in data and poor 

small sample properties (see Embrechts et al., 1997, Ch. 6). Motivated by these problems, several 

studies have focused on the alternative approaches to the tail index estimation. For instance, 

Huisman et al. (2001) propose a weighted analogue of Hill's estimator that was reported to 

correct its small sample bias for sample sizes less than 1000. Embrechts et al. (1997), among 

others, advocated sophisticated non-linear procedures for tail index estimation. 

 Despite the availability of more sophisticated methods, a popular way to estimate the tail 

index ζ  is still to run the following OLS log-log rank-size regression with λ= 0: 
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 log (t − λ) = a − b·log(X(t)), t=1, ..., n,    (8) 

 

or, in other words, calling t the rank of an observation, and Z(t) its size:  

                    

    log (Rank − λ) = a − b·log (Size)               (9) 

 

(here and throughout the paper, log(⋅) stands for the natural logarithm). The reason for the 

popularity of the OLS approach to tail index estimation is arguably the simplicity and robustness 

of this method.  

 Regressions (8)-(9) with λ = 0 are motivated by the linear approximation  

)()(~)]([ xlog-ζClogxXPlog > implied by (1) and its empirical analogue 

)(-)()( )t(XlogClogt/Nlog ζ≈  for the observations )t(X  in tails  (2) of the distributions 

considered. 6 

 In various frameworks, the log-log rank-size regressions of form (8)-(9) in the case λ = 0 

and closely related procedures were employed, in particular, in Levy (2003), Levy and Levy 

(2003), Helpman et al. (2004), and many other works (see also the review and references in 

Gabaix and Ibragimov, 2011). 

  Unfortunately, the tail index estimation procedures based on OLS log-log rank-size 

regressions (8)-(9) with λ = 0 are strongly biased in small samples. The recent study by Gabaix 

and Ibragimov (2011) provides a simple practical remedy for this bias, and argues that, if one 

wants to use an OLS regression approach to tail index estimation, one should use the Rank−1/2, 

and run  

    )log()2/1log( SizebaRank −=− ,                                                (10) 

that is, 

         log (t − 1/2) = a − b·log(X(t)), t=1, ...,n.     (11) 

                                                            
6 In particular, similar to the estimates of Hill type (6)-(7), log-log regressions (8)-(9) with n=N provide estimates of 
the heavy-tailedness parameter ζ in Pareto distributions (5) fitted to all income data available.  
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In (11), one takes the OLS estimate b̂  as the log-log rank-size estimate RSζ
)

 of the tail index 

ζ. The shift of 1/2 is optimal, and reduces the bias to a leading order. The standard error of the 

estimator RSζ
)

 is RSRS n
.e.s ζ

)2
=  (the standard error is thus different from the OLS standard error 

given by RSRS n
.e.s ζ

)1
=  ). The corresponding correct 95% confidence interval for ζ is  

               







×+×− RSRSRSRS n

.;
n

. ζζζζ
)))) 29612961 .            (12) 

Numerical results in Gabaix and Ibragimov (2011) further demonstrate the advantage of the 

proposed approach over the standard OLS estimation procedures (8)-(9) with λ= 0 and indicate 

that it performs well under deviations from power laws and dependent heavy-tailed processes, 

including GARCH models. The modifications of the OLS log-log rank-size regressions with the 

optimal shift λ=1/2 and the correct standard errors provided by Gabaix and Ibragimov (2011) 

were subsequently used in Bosker et al. (2006), Bosker et al. (2008), Gabaix and Landier (2008), 

Hinloopen and van Marrewijk (2006), Ioannides et al. (2008), Zhang, Chen and Wang (2008) and 

several other works. 

The paper further provides the estimates for several modifications of log-log rank-size 

regressions (8)-(9), such as log-linear size-rank regressions 

            log(X(t)) = a + b·t, t=1, ..., N,                          (13) 

that is, 

                     log (Size) = a + b· Rank.                          (14) 

Empirical log-linear size-rank relations (13)-(14) can be interpreted in terms of the Weber-

Fechner law that this paper applies to income and wealth data for the first time in the literature in 

Appendix WF. In contrast to power laws and the implied log-log rank-size regressions (8)-(9) 

that hold for the truncated sample with n largest observations, log-linear size-rank regressions  

(13)-(14) and the corresponding Weber-Fechner laws discussed in Appendix WF are assumed to 

hold for the whole sample with N observations. Thus, regressions (13)-(14) and Weber-Fechner 

laws approximate the distribution of income over the whole population in contrast to log-log 

rank-size regressions of type (8)-(9) and power laws that hold only in the tails of income 

distribution. 
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 We also provide estimation results for modifications of rank-size regressions (8)-(9) and 

(13)-(14)  in the form of "hierarchy of logarithms" such as  

     tba)Xlog tm ⋅+=)(( ,             (15) 

that is, 

                   Rankba)(Sizelogm ⋅+= ,                         (16) 

where )))x(log....glog(log(lo)xlog
m

m 444 3444 21
=(  is the m-th iteration of the logarithm.  

The estimation results obtained using the methodology described in this section are 

presented and discussed in Section 6. 

 
The estimates of the tail indices for income and wealth and the implied power law 

distributions (1) can be further used for semiparametric estimation of income and wealth 

inequality across countries in consideration. This estimation can be conducted using the 

expressions for the measures for underlying income and wealth distributions (see, for instance, 

Cowell and Flachaire, 2007, and Davidson and Flachaire, 2007). The discussion of these 

applications of the estimated income and wealth distributions and their heavy-tailedness 

parameters is presented in Section 7. 

 Among other results, the conclusions in Ibragimov and Ibragimov (2007) and their 

extensions discussed in Appendix MD indicate that an increase in income inequality decreases 

the demand elasticities for luxury goods and increases those for necessities. These conclusions 

allow one to use the estimates of income inequality, their changes over time and comparisons 

across countries for inference on consumer demand for different classes of goods. In particular, 

the empirical income inequality measures and elasticities for luxuries can be used to obtain 

estimates of demand for luxury goods and, indirectly, those of the volume of unofficial economy 

and its dynamics (see the discussion in Appendix MD and Section 8). 

 

5. DATA 

 The datasets used in the empirical analysis in the paper are as described below. 

 The estimates for the World in the paper use the data on the worth of the wealthiest 

people of the planet in 2008 and 2009. The sample for 2008 contains the data for the owners of 

$9 and more billions, and the sample for 2009 is for the owners of $5 and more billions.  
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 The dataset for Russia is from Rosstat (2007) and similar publications by the Rosstat for 

other years. Rosstat (the Federal State Statistics Service of Russian Federation) conducts 

sampling surveys of household budgets continuously during a calendar year in all subjects of 

Russian Federation. The surveys cover 48.7 thousands of households. The microdata on the 

survey results are provided by the Federal State Statistics Service online.7 

 The empirical results for Kyrgyzstan are mainly based on the sampling surveys conducted 

by the NSCKR, the National Statistical Committee of Kyrgyz Republic  (see NSCKR, 2009, 

2010a,b,  and similar publications by the committee for other years). The yearly sampling 

surveys cover about 5,000 households and the NSCKR reports the results for a number of social 

and economic statistics, including those on measurement of standard of living and poverty in the 

country. 8  Similar surveys are also used in the empirical analysis for other post-Soviet Central 

Asian countries considered in the paper. 9   

 For illustration, the diagrams in Appendix B.1 present the frequency distribution for the 

datasets under the analysis, and the diagrams in Appendix B.2 provide their cdf's. In addition, in 

Appendix B.2, we present the data on the dynamics of income inequality in Russia and the post-

Soviet Central Asian countries needed for the discussion of the applications of the empirical 

results obtained to the inference on income inequality. 

 

 

6. EMPIRICAL RESULTS 

 This section presents and reviews the estimation results obtained using the data on income 

and wealth distribution for the World, Russia, Kazakhstan, Kyrgyzstan, Tajikistan and 

Uzbekistan.  

                                                            
7 http://www.micro-data.ru 

8 We also use the data on the frequency analysis of monthly earnings in Kyrgyzstan in 1994 conducted by the World 
Bank. The data is on the income levels of 4,489.3 thousands of households. 

9 For a review, see http://belstat.gov.by/homep/ru/links/links.php and 

http://www.cisstat.com/rus/biblio-cis-list.htm 
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 Tables A.1 provides some of the basic statistics for the datasets on income for the 

economies considered. Tables A.2 provide the tail index estimates RSζ
)

 
obtained using log-log 

rank-size regression (10)-(11) with the optimal shift λ= 1/2 and the correct standard errors 

RSRS n
.e.s ζ

)2
= , as discussed in Section . The tables also provide the (correct) 95% confidence 

intervals (12) for the true tail indices ζ  in (1) constructed using these standard errors. The last 

three columns of Tables A.2 also provide Hill's tail index estimates Hillζ
)

, their standard errors 

HillHill n
.e.s ζ

)1
=  and the corresponding 95% confidence intervals (4) for the tail indices ζ.  

 The inference results for Russia in Table A.2.Ru are presented for the number n of 

extreme observations (2) used in estimation equal to m%=10%, 5% and 1% of the total sample 

size N: n=mN/100. As indicated in the previous section, estimation for the World (Table A.2.W) 

is based on the dataset on n largest worth levels among all people and thus do not require 

truncation.   

 Due to the relatively small sizes of samples available for Kazakhstan, Kyrgyzstan, 

Tajikistan and Uzbekistan, the estimation results for these countries in Tables A.2.Kz, A.2.Kg, 

A.2.Tj and A.2.Uz are based on the tail truncation levels m=20%, 50% and 100%.10   

 For illustration, Diagrams A.2 following Tables A.2 provide the log-log rank-size plots 

that corresponds to the log-log rank-size regressions (10)-(11) estimated in the tables.  

 The estimation results for the worth distribution in the World in Table A.2.W are largely 

similar to the conclusions for developed countries in the literature that imply tail index estimates 

ζ ≈1.5 for wealth (see Sections 2 and 3). Namely, the confidence intervals constructed using Hill's 

estimates Hillζ
)

 in Table A.2.W imply that the tail index ζ of the World worth distribution in 2008 

lies in the interval ζ∈(1.4, 2.3) with 95% probability, and the tail index in 2009 satisfies ζ∈(1.3, 

2.1) with 95% probability. Similarly, the confidence interval for ζ  in 2009 constructed using the 

log-log rank-size regression estimate RSζ
)

 implies ζ∈(1.4, 2.5) with 95% probability. The 

corresponding confidence interval for ζ  in 2008 is (1.53, 2.69) and has the left-end point that is 
                                                            
10 There is thus no truncation for m%=100% and n=N, and the inference results for this case correspond to the 
estimation of Pareto distributions (5) fitted to all the income data available. 
 
 



 

 

15

very close to the value ζ ≈1.5. Importantly, the value ζ ≈1.5 lies in the 95% confidence intervals 

constructed using Hill's estimate for the worth data in 2008 and 2009 and in the 95% confidence 

interval obtained using the log-log rank-size regression estimate for the worth distribution in 

2009. Thus, using these results, the null hypothesis H0: ζ =1.5 is not rejected (in favor of the two-

sided alternative Ha: ζ ≠1.5)  at the 5% significance level for the worth distribution in 2008 and 

2009. It is also important to note that Hill's point estimate 691.Hill =ζ
)

 
for the worth distribution 

in 2009 is close to the benchmark value ζ ≈1.5.  

 The results in Table A.2.Ru for the income distribution in Russia are largely in agreement 

with the empirical results on the tail indices ζ∈(1.5, 3) for income distribution in developed 

economies. Namely, all the log-log rank-size regression point estimates RSζ
)

 
and Hill's estimates 

Hillζ
)

 in the table are very close to the value 3=ζ . The most of these point estimates are slightly 

smaller than 3 and, thus, belong to the benchmark interval ∈(1.5, 3). Similarly, the most of the 

confidence intervals constructed using the estimates RSζ
)

 
and Hillζ

)

 
in the table either lie in the 

interval (1.5, 3) or have their larger parts lying in the interval. Furthermore, this is the case for the 

tail index estimates and the corresponding confidence intervals constructed using different tail 

truncation levels m% (=10%, 5% and 1%). For instance, according to the confidence intervals in 

the last three rows of Table A.2.Ru constructed using the estimates RSζ
)

 
and Hillζ

)

 
for different 

truncation levels m%, the tail index ζ  of the income distribution in Russian in the 4th quarter of 

2007 satisfies ζ∈(2.3, 3.2) with 95% probability. Similar conclusions also hold for other time 

periods in the table. 

 Importantly, the left end-points of all the confidence intervals in Table A2.Ru are greater 

than 2. That is, the null hypothesis H0: ζ =2 is rejected in favor of Ha: ζ >2 at the 2.5% 

significance level for all the time periods dealt with. These conclusions thus imply that the 

variance of the income distribution in Russia is finite.  

 Similar to the point estimates ζ
)

, the right-end points of all the confidence intervals in 

Table A2.Ru are close to the right boundary (=3) of the interval ζ∈(1.5, 3) in developed markets. 

Thus, similar to the case of developed markets (see the discussion in Sections 1 and 3), the third 

moment is very likely to be infinite for the income distribution in Russia. 
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 In addition, the  right-end points of all the confidence intervals are smaller than 4. This 

implies that the null hypothesis H0: ζ =4 is rejected in favor of Ha: ζ <4 at the 2.5% significance 

level in all of the time periods in the table. Consequently, similar to the developed economies, the 

income distributions in Russia has infinite fourth moment. 

 The qualitative agreement of the results in Table A.2.Ru with those for developed 

economies in the literature suggests that, apparently, the income distribution in Russia has 

already reached its equilibrium in terms of the likelihood of extreme fluctuations and re-

distributions. 

 As indicated before, the estimation results for the income distribution in Central Asian 

economies in the rest of Tables A.2 are based on rather small samples. Due to small sample sizes, 

the standard errors of the tail index estimates in the tables are quite large and the corresponding 

confidence intervals are rather wide. In addition, as discussed above, the small sample sizes 

require one to take the tail truncation levels m% to be rather large (e.g., equal to 20% or 50%, and 

also fit power laws (1) and Pareto distributions (5) to the whole sample of observations available 

with m%=100% and n=N) in order to increase the number of the largest order statistics (2) used 

in the tail index estimation.  

 Importantly, similar to the results for Russia discussed above, all of the log-log rank-size 

regression point estimates RSζ
)

 of the tail index  ζ  for the income distribution in Kazakhstan in 

Table A.2.Kz either lie in the interval ζ∈(1.5, 3) or are  very close to its right boundary of 3. 

Similarly, Hill's tail index point estimates Hillζ
)

 
for Kazakhstan are close to 3 as well. This 

suggest that the heavy-tailedness properties of the income distribution in Kazakhstan are similar 

to those in Russia and the developed countries with ζ∈(1.5, 3). 

 Similarly, the majority of the log-log rank-size regression point estimates RSζ
)

 of the tail 

index of the income distribution in Kyrgyzstan in Table A.2.Kg lie in the interval (1.5, 3), and the 

rest of the estimates are close to its left boundary of 1.5. In addition, about a half of Hill's point 

estimates Hillζ
)

 
in the table either lie in the above interval or are close to the right boundary 3. 

These results suggest similarities of the heavy-tailedness properties of the income distribution in 

Kyrgyzstan to those in the developed markets, Russia and Kazakhstan. However, according to the 

point estimates, the income distribution in Kyrgyzstan tends to be more heavy-tailed than in the 
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case of the latter countries. Namely, the tail index for the income distribution in Kyrgyzstan is 

likely to be smaller than in the case of Kazakhstan and Russia. 

 Unfortunately, the samples sizes for Tajikistan and Uzbekistan in Tables A.2.Tj and 

A.2.Uz are very small. A number of the log-log rank-size regression and Hill's point tail index 

estimates in the tables lie in the interval (1.5, 3) or are close to its boundaries. However, several 

of the point estimates are rather distant from the interval. The problem of robust tail index 

estimation for Tajikistan and Uzbekistan and other Central Asian economies needs to be revisited 

using large datasets and is left for further research (see also the discussion in Section 8). 

 Tables A.3 present the estimation results for the Weber-Fechner laws in the form of 

linear-log size-rank regressions (13)-(14) for the World, Russia and Kazakhstan (see Section 4 

and Appendix WF). Diagrams A.3 illustrate the Weber-Fechner laws in form (WF.1) for the 

economies under the analysis.  According to the results in Tables A.3, the linear-log size-rank 

regressions and Weber-Fechner laws provide remarkably good approximations to the worth 

distribution among the wealthiest people in the World and to income distributions among the 

whole population in Russia and Kazakhstan. This indicates that Weber-Fechner laws provide 

convenient approaches to modeling of wealth and income distribution among all households in a 

population. Such approaches may be used to complement power law analysis applied to extreme 

observations on income levels.  

 Table A.4 provides estimation results for the modification of log-log rank-size regression 

in the form of hierarchy of logarithms (15)-(16) applied to the data on the level of worth of the 

wealthiest people in the World. The results in Table A.4 imply the approximations to the 

distribution of the worth in the data using exponent iterations provided in the note under the 

table. 

  

 7. APPLICATIONS TO INEQUALITY AND POVERTY MEASUREMENT 

 Empirical analysis of heavy-tailedness parameters and distributions of income and wealth 

is important, in part, because it can be used in semiparametric estimation of income inequality 

and poverty measures. This estimation can be conducted using the expressions for the measures 

for underlying income and wealth distributions (see, for instance, Cowell and Flachaire, 2007, 

and Davidson and Flachaire, 2007).  
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 This section discusses applications of the empirical analysis of tail indices and heavy-

tailedness properties of income distributions in semiparametric inference on inequality and 

poverty measures. As an illustration, we focus on the analysis of the most commonly used 

measure of the inequality, the Gini coefficient. In complete similarity, one can obtain analogous 

estimates for other inequality measures. 

 It is well-known that, for Pareto income distribution (5), the Lorenz curve is given by 

ζ/)y()y(L 1111 −−−= , and the corresponding Gini coefficient is 
12

1)(
−

==
ζ

ζGG . It is 

important to note that )(ζG  is decreasing in .ζ  Therefore, a as expected, a higher degree of 

heavy-tailedness in the underlying income distribution and the implied greater likelihood of 

occurrence of extremes and outliers in it (that is, a smaller value of the tail indexζ ) translates 

into greater inequality as measured by the Gini coefficient G. Also, the benchmark interval 

),.( 351∈ζ  for the tail indices ζ of income distributions in the developed economies 

corresponds, in the Pareto case, to the benchmark values 0.5)(0.2,)( ∈= ζGG  for their Gini 

coefficients. Similarly, the benchmark value 51.=ζ  for the wealth distributions in the developed 

markets corresponds to the benchmark value 50)( .GG == ζ  of the Gini coefficient. 

 Naturally, in the case of a good fit of Pareto model (5) to the whole underlying income 

distribution, the estimates ζ̂  of the heavy-tailedness parameter ζ  (e.g., estimates (6)-(7) and 

those obtained using log-log rank-size regressions (8)-(9) with n=N) imply the corresponding  

estimates 
12

1)(
−

==
ζ

ζ ˆ
ˆGG  of the Gini coefficient of income inequality.  

 Similar to the Pareto case, the estimates ζ̂  of the tail index ζ  in power law models (1) 

can be used to obtain the corresponding estimates of the inequality measure G in the upper tails 

(e.g., upper 10%, 5% and 1%) of the income distributions considered. That is, the semiparametric 

estimates of G in the upper tails are given by 
12

1
−

==
ζ

ζ ˆ)ˆ(GG
)

. Using the delta method, we 

obtain that the standard error of )ˆ(GG ζ=
)

 equals to 
212

2

)ˆ(

.e.s
.e.s)ˆ('G.e.s

ˆ

G −

⋅
=⋅=

ζ
ζ ζ

ς)
) , where 

ζ̂.e.s  is the standard error of the estimator ζ̂ .  
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 For instance, for the log-log rank-size estimator RSζ
)

 of the tail index ζ , the standard 

error of  )ˆ(GG RSRS ζ=
)

is RS
RS

G
ˆ

n)ˆ(
.e.s

RS
ζ

ζ
2

12
2

2
⋅

−
=) . The standard error of )ˆ(GG HillHill ζ=

)
 for 

Hill's estimator Hillζ
)

 is Hill
Hill

G
ˆ

n)ˆ(
.e.s

Hill
ζ

ζ
1

12
2

2
⋅

−
=) .   

 As usual, the corresponding 95% confidence intervals for the value G  in the upper tails of 

income distributions considered are given by ).e.s.G,.e.s.G( GG
))

))
⋅+⋅− 961961 , so that the 95%-

confidence intervals constructed using the log-log rank-size and Hill's estimates RSζ
)

 and Hillζ
)

 are  

    ).e.s.G,.e.s.G(
RSRS GRSGRS
))

))
⋅+⋅− 961961             (17)  

and  

    )..e.s.G,.e.s.G(
HillHill GHillGHill
))

))
⋅+⋅− 961961            (18)  

 Tables A.5 present the estimates RSG
)

and HillG
)

 of the Gini coefficient in the upper tails of 

the worth distribution in the World and the income distribution in Russia implied by the estimates  

RSζ
)

 
and Hillζ

)

 Tables A.2.W and A.2.Ru. 11  In addition, the tables provide the standard errors of 

the estimates of the Gini coefficients and the corresponding confidence intervals derived as 

discussed above in the section. 
 The estimation results for the Gini coefficient in the upper tail of the wealth distribution in 

the World in Table A.5.W are largely in agreement with the benchmark G=0.5 implied the tail 

index value 51.=ζ
 
for the wealth distribution in the developed economies. In particular, the 

right-end points of the confidence intervals in Table A.5.W are close to 0.5. In addition, this 

value belongs to the confidence interval for 2009 constructed using Hill's tail index estimate. 

Thus, using the confidence interval, the hypothesis 510 .:H =ζ  is not rejected for the upper tail 

of the World's wealth distribution in that year. One should note that the agreement of estimates of 

                                                            
11 We present the estimation results of the Gini coefficient for the World and Russia only since the estimates in 

Tables A.2 are the most reliable for these economies according to the sample sizes used in the estimation and the 

corresponding standard errors and confidence intervals. The analysis for the other economies considered can be 

conducted in a similar way. 
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the Gini coefficient in Table A.5.W with the value 51.=ζ  for the developed countries is 

somewhat less pronounced than in the comparisons of the tail index estimates in Table A.2.W 

with the benchmark value 51.=ζ . This, in part, is due to the fact that, as is easy to see, the 

standard errors 
212

2

)ˆ(

.e.s
.e.s

ˆ

G −

⋅
=

ζ
ζ

) of Ĝ  are smaller than the standard errors ζ̂.e.s  of ζ̂  if 

..ˆ 31>ζ Similarly, for such values of ζ̂ , the length of the confidence intervals for G is smaller 

than the length of the corresponding confidence intervals for .ζ   

 Similar to the results for the tail index ζ in Table A.2.Ru, the semiparametric estimates of 

the Gini coefficient G for the upper tails (the upper 10%, 5% and 1%) of the income distribution 

in Russia in Table A.5.Ru are largely in agreement with the benchmark values 0.5)(0.2,∈G  for 

the developed economies. All of the point estimates G
)

 
are close to the value 0.2=G  that 

corresponds to 3=ζ , and most of these estimates are slightly greater than 0.2 and thus belong to 

the interval 0.5).(0.2,  In addition, the confidence intervals for the Gini coefficient G in different 

upper tails (10%, 5% and 1%) in the table either lie in the interval (0.2, 0.5) or have their larger 

parts in it. The null hypothesis H0: G =0.5 of large income inequality (corresponding to 51.=ζ ) 

is rejected in favor of  Ha: G <0.5 for all the time periods and tail truncation levels reported in the 

table. 

 It is interesting to compare the estimates of the Gini coefficient in the upper parts of the 

income distribution in Russia in Table A.5.Ru with the dynamics of the Gini coefficient for the 

whole distribution of income in this country (see Table B.2.Ru). Such comparisons are important 

because they provide information about inequality and the shape of the Lorenz curves in different 

parts of the underlying income distribution. Thus, importantly, the comparisons characterize the 

differences in the inequality among the relatively rich, the middle income and the relatively poor 

households.  

 According to Table B.2.Ru, the Gini coefficient for the whole income distribution in 

Russia increased from about 0.3 in 1992 to a rather stable value of about 0.4 in 1995-2009. These 

values belong to the benchmark interval 0.5)(0.2,∈G  for the upper tails of income distributions 

in the developed economies implied by the tail index estimates ),.( 351∈ζ  in power law 

approximations (1) for income. 
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 The value 40.G ≈  for the Gini coefficient in the whole income distribution in Russia in 

1995-2009 is, however, considerably greater than the estimates 20.G ≈
 
of the Gini coefficient in 

the upper tails of the distribution in Table A.5.Ru. Moreover, according to the confidence 

intervals in Table A.5.Ru, the null hypothesis 400 .G:H =
 

(and even the null hypothesis 

300 .G:H = ) is rejected at the 2.5% significance level in favor of 400 .G:H <  (resp., 

300 .G:H < ) for the Gini coefficient in all the upper tails (10%, 5% and 1%) considered in the 

table. This implies that most of the income inequality in Russia is, apparently, due to the income 

disparities in the middle and the lower parts of the income distribution (this corresponds to a 

higher degree of convexity of the Lorenz curve for the middle and small income levels comparing 

to the large levels of income). In other words, apparently, the inequality in Russia is higher 

among the middle-income and relatively poor households than among the relatively rich 

households. 

  

8. CONCLUSION AND FURTHER RESEARCH 

 Emerging and developing economies are likely to be more volatile than their developed 

counter-parts and subject to more extreme external and internal shocks. The higher degree of 

volatility leads to the expectation that heavy-tailedness properties and distributions of key 

variables in these markets, including income and wealth, may differ from those in developed 

economies. However, the results obtained in this paper point out to interesting and somewhat 

surprising similarities between the heavy-tailedness characteristics and distributional properties 

of income and wealth distributions in some of the post-Soviet economies, including Russia, and 

those in the developed markets. Among other important issues, these results characterize the 

equilibrium dynamics of income and wealth distributions in the markets considered and, as 

discussed in the paper, can be further used in the analysis of income and wealth inequality in 

them. 

Among other directions, further research may focus on extensions of the analysis using 

larger samples of observations for some of the economies under the analysis. In particular, it is 

important to complement the empirical analysis for Central Asian economies in the paper using 

larger data samples. It is of interest to see whether the estimation results for the income and 

wealth distribution in the post-Soviet Central Asian countries, especially in Kyrgyzstan, 

Tajikistan and Uzbekistan, are similar to the results for the World obtained in the paper. The 
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results on the tail index estimation in relatively small samples for the Central Asian countries 

considered in the paper may also be complemented using robust small sample tail index inference 

procedures such as those based on weighed Hill's estimators for different truncation levels in 

Huisman et al. (2001). 

In addition, further research may take into account the contribution to income and wealth 

distributions from shadow wages and shadow incomes in the economies. Estimation of the 

shadow part of income may use, among others, the methods and approaches discussed, in the 

case of Uzbekistan, in Ibragimov, Ibragimov and Karimov (2010). The estimation results can be 

further applied to measurement of income inequality and poverty in Russia and Central Asian 

countries using both the official and shadow wages and incomes in the economies.  

Further research developments may focus on the analysis of implications of the obtained 

empirical results for consumer demand on different classes of goods, including luxuries and 

necessities, and market equilibrium. This analysis can based on the theoretical results in 

Ibragimov and Ibragimov (1997) and their extensions to the case of heterogeneous preferences 

obtained in Appendix MD. In particular, it is of interest to consider implications of the empirical 

results for estimates of the volume of the unofficial part of emerging economies using the data on 

luxury goods consumption by households and estimates of elasticity of demand on luxuries.  

 The extensions may also develop further analysis of Weber-Fechner laws as alternatives 

to power law modeling for income distribution in the economies under consideration. Among 

other problems, it is of interest to explore the advantages of combining the Weber-Fechner and 

power law approaches for modeling both the middle of income distributions and its tails. 
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APPENDIX A: Estimation results 

 

Table A.1.1: Descriptive statistics for distribution of income in households. Russia, 2005-2007 (quarterly 
data, average rubles per month) 

Year, 
Quarter 

Sample 
size Mean Median Moda Std. 

Dev. Max. Min. Skew. Kurt. Gini 
coef. 

2005,1 46974 22820 17075 10000 23940 1429393 0.02 14.5 570.1 0.414 
2005,2 53132 25086 18975 10000 25290 1269834 0.25 10.3 294.4 0.412 
2005,3 53129 27000 20302 9500 28032 1849601 0.00 13.2 539.3 0.415 
2005,4 53135 29668 22430 13500 28740 1119837 0.04 8.6 210.6 0.412 

2006,1 53093 28619 21793 9500 30548 2152383 0.07 20.6 1133.
6 0.409 

2006,2 53094 30445 23139 9500 33214 2110964 0.03 19.6 954.5 0.411 
2006,3 53089 32435 24635 13500 31426 1981988 0.05 10.5 415.3 0.412 
2006,4 53072 35784 27422 16000 32746 2104030 0.18 9.5 409.1 0.407 
2007,1 50589 34561 26523 17000 34235 1718131 0.07 12.8 478.3 0.406 
2007,2 49884 37562 28636 13000 34819 1869102 0.05 7.8 240.5 0.410 

2007,3 53104 41355 31363 15000 47198 3246727 0.17 23.6 1285.
2 0.418 

2007,4 53096 46789 35585 18000 46460 2446446 0.06 10.0 305.6 0.413 
 

Table A.1.2: Descriptive statistics for distribution of income in households, other CIS countries 

Country Year Sample 
size 

Mean Median Mode
Gini 

coefficient 

Russia, rub 2007 53 096 15500 26200 46785 0.402 

Kazakhstan, 

tenge 

1997  2665 1230  0.497 

2009  34736   0.267 

Kyrgyzstan, 

som 
1994 4 489 300 138 110 70 0.32 

Uzbekistan, 

sum 
1997 36 039 2054 1140 900 0.457 

Tajikistan, 

somoni 
2009 20 304.78 181 148 0.427 

 

Note: The data for Kazakhstan and Tajikistan in 2009 are the nominal average salaries over economic 

industries. Similarly, the data for Kazakhstan in 1997 is based on income intervals. 
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Table A.2.W: Tail index estimates for the World. 

1 2 3 4 5 6 7 8 

Year 
Sample 

Size RSζ
)

 
RS

RS

n

.e.s

ζ
)2

=
 95% CI, 

equation (12) Hillζ
)

 
Hill

Hill

n

.e.s

ζ
)1

=
 95% CI,  

equation (4) 

2008 102 2.109 0.295 (1.530, 2.688) 1.8601 0.1842 (1.499, 2.221) 
2009 103 1.944 0.271 (1.414, 2.476) 1.6868 0.1662 (1.361, 2.013) 

 
   

Diagram A.2.W: Log-log rank-size plots for the World, 2008-2009 
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Table A.2.Ru: Tail index estimates for Russia. 

1 2 3 4 5 6 7 8 9 10 

Year, 
quarter 

Sample 
size, N 

% of largest 
observations, 

m 
n RSζ

)
 

RS

RS

n

.e.s

ζ
)2

=
 95% CI, 

equation (12) Hillζ
)

 
Hill

Hill

n

.e.s

ζ
)1

=
 95% CI, 

equation (4) 

2005,1 46974 
10 4697 2.942 0.061 (2.823, 3.060) 2.827 0.041 (2.746, 2.908)
5 2349 2.950 0.086 (2.781, 3.118) 3.012 0.062 (2.890, 3.134)
1 470 2.457 0.160 (2.143, 2.771) 3.136 0.145 (2.852, 3.420)

2005,2 53132 
10 5313 2.887 0.056 (2.777, 2.996) 2.786 0.038 (2.711, 2.861)
5 2656 2.916 0.080 (2.760, 3.073) 2.997 0.058 (2.883, 3.111)
1 531 2.514 0.154 (2.211, 2.816) 3.062 0.133 (2.802, 3.323)

2005,3 53129 
10 5313 2.871 0.056 (2.762, 2.980) 2.755 0.038 (2.681, 2.829)
5 2656 2.877 0.079 (2.722, 3.031) 2.972 0.058 (2.859, 3.085)
1 531 2.558 0.157 (2.250, 2.865) 2.758 0.120 (2.524, 2.993)

2005,4 53135 
10 5313 3.045 0.059 (2.929, 3.161) 2.879 0.040 (2.801, 2.956)
5 2656 3.075 0.084 (2.909, 3.240) 3.202 0.062 (3.080, 3.324)
1 531 2.625 0.161 (2.310, 2.941) 3.174 0.138 (2.904, 3.444)

2006,1 53093 
10 5309 2.999 0.058 (2.885, 3.113) 2.873 0.039 (2.796, 2.950)
5 2655 2.971 0.082 (2.811, 3.131) 3.199 0.062 (3.077, 3.321)
1 531 2.388 0.147 (2.101, 2.675) 3.145 0.137 (2.878, 3.413)

2006,2 53094 
10 5309 2.880 0.056 (2.771, 2.990) 2.853 0.039 (2.777, 2.930)
5 2655 2.828 0.078 (2.676, 2.980) 2.992 0.058 (2.878, 3.106)
1 531 2.395 0.147 (2.107, 2.683) 2.887 0.125 (2.642, 3.133)

2006,3 53089 
10 5309 2.994 0.058 (2.880, 3.108) 2.792 0.038 (2.717, 2.867)
5 2655 3.076 0.084 (2.910, 3.241) 3.048 0.059 (2.932, 3.164)
1 531 2.947 0.181 (2.593, 3.302) 3.224 0.140 (2.949, 3.498)

2006,4 53072 
10 5309 3.238 0.063 (3.115, 3.361) 2.886 0.040 (2.808, 2.963)
5 2655 3.489 0.096 (3.301, 3.677) 3.237 0.063 (3.114, 3.360)
1 531 3.467 0.213 (3.050, 3.883) 3.904 0.169 (3.572, 4.236)

2007,1 50589 
10 5059 3.019 0.060 (2.902, 3.137) 2.891 0.041 (2.811, 2.970)
5 2530 3.023 0.085 (2.857, 3.190) 3.109 0.062 (2.988, 3.231)
1 506 2.599 0.163 (2.279, 2.919) 2.855 0.127 (2.606, 3.104)

2007,2 49884 
10 4988 3.088 0.062 (2.967, 3.210) 2.857 0.041 (2.778, 2.937)
5 2500 3.257 0.092 (3.076, 3.437) 3.094 0.062 (2.973, 3.215)
1 499 3.322 0.210 (2.910, 3.734) 3.528 0.158 (3.219, 3.838)

2007,3 53104 
10 5310 2.912 0.057 (2.801, 3.023) 2.835 0.039 (2.759, 2.911)
5 2655 2.904 0.080 (2.748, 3.060) 3.009 0.058 (2.894, 3.123)
1 531 2.412 0.148 (2.122, 2.702) 3.240 0.141 (2.965, 3.516)

2007,4 53096 
10 5310 2.941 0.057 (2.829, 3.053) 2.811 0.039 (2.735, 2.886)
5 2655 2.972 0.082 (2.812, 3.131) 3.077 0.060 (2.960, 3.194)
1 531 2.626 0.161 (2.310, 2.941) 2.935 0.127 (2.685, 3.184)
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Diagram A.2.Ru: Log-log rank-size plot for Russia in 2005-2007 (1% tail truncation level). 
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Table A.2.Kz: Tail index estimates for Kazakhstan. 

Years Sample 
size, N 

% of largest 
observations, 

m 
n RSζ

)
 

RS

RS

n

.e.s

ζ
)2

=
 95% CI, 

equation (12) Hillζ
)

 
Hill

Hill

n

.e.s

ζ
)1

=
 95% CI, 

equation (4) 

1 2 3 4 5 6 7 8 9 10 

2006 46 50 23 2.792 0.823 (1.178, 4.406) 3.273 0.682 (1.935, 4.610) 
20 9 2.301 1.085 (0.175, 4.426) 3.096 1.032 (1.073, 5.119) 

2007 46 50 23 3.051 0.900 (1.288, 4.815) 3.679 0.767 (2.175, 5.182) 
20 9 2.478 1.168 (0.188, 4.767) 3.025 1.008 (1.049, 5.001) 

2008 46 50 23 3.037 0.896 (1.282, 4.793) 3.743 0.781 (2.213, 5.273) 
20 9 2.575 1.214 (0.196, 4.955) 3.147 1.049 (1.091, 5.203) 

Note: Estimates are based on the nominal average salaries in economic industries. 
 

Diagram A.2.Kz: Log-log rank-size plots for Kazakhstan. 
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Table A.2.Kg: Tail index estimates for Kyrgyzstan 

Years 
% of largest 
observations,  

m 
n RSζ

)
 

RS

RS

n

.e.s

ζ
)2

=
 95% CI, 

equation (12) Hillζ
)

 
Hill

Hill

n

.e.s

ζ
)1

=
 95% CI, 

equation (4) 

1 2 3 4 5 6 7 8 9 

1999 100 15 1.536 0.561 (0.437, 2.636) 1.1269 0.2910 (0.557, 1.697) 
50 8 2.988 1.494 (0.060, 5.917) 3.5602 1.2587 (1.093, 6.027) 

2000 100 15 1.300 0.475 (0.370, 2.230) 1.1156 0.2881 (0.551, 1.680) 
50 8 1.675 0.838 (0.034, 3.317) 2.6129 0.9238 (0.802, 4.424) 

2001 100 15 1.276 0.466 (0.363, 2.189) 1.0157 0.2622 (0.502, 1.530) 
50 8 1.673 0.837 (0.033, 3.313) 2.3103 0.8168 (0.709, 3.911) 

2002 100 15 1.499 0.547 (0.426, 2.572) 1.2180 0.3145 (0.602, 1.834) 
50 8 2.905 1.453 (0.058, 5.753) 3.1615 1.1178 (0.971, 5.352) 

2003 100 15 1.513 0.552 (0.430, 2.595) 1.2229 0.3157 (0.604, 1.842) 
50 8 2.946 1.473 (0.059, 5.834) 3.0088 1.0638 (0.924, 5.094) 

2004 100 15 1.512 0.552 (0.430, 2.594) 1.0795 0.2787 (0.533, 1.626) 
50 8 2.479 1.240 (0.050, 4.909) 2.6975 0.9537 (0.828, 4.567) 

2005 100 15 1.488 0.543 (0.423, 2.553) 1.0775 0.2782 (0.532, 1.623) 
50 8 2.314 1.157 (0.046, 4.581) 3.0103 1.0643 (0.924, 5.096) 

2006 100 15 1.586 0.579 (0.451, 2.721) 1.0752 0.2776 (0.531, 1.619) 
50 8 2.289 1.144 (0.046, 4.532) 2.4848 0.8785 (0.763, 4.207) 

2007 100 15 1.619 0.591 (0.460, 2.777) 1.0446 0.2697 (0.516, 1.573) 
50 8 2.791 1.395 (0.056, 5.525) 3.2765 1.1584 (1.006, 5.547) 

2008 100 15 1.518 0.554 (0.432, 2.605) 0.9497 0.2452 (0.469, 1.430) 
50 8 2.532 1.266 (0.051, 5.013) 3.1190 1.1027 (0.958, 5.280) 

Note: Estimates are based on the nominal average salaries in branches of the economy. 
 

Diagram A.2.Kg: Log-log rank-size plots for Kyrgyzstan. 
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Table A.2.Tj: Tail index estimates for Tadjikistan 

Years Sample 
size 

% of largest 
observations n RSζ

)
 

RS

RS

n

.e.s

ζ
)2

=
 95% CI, 

equation (12) Hillζ
)

 
Hill

Hill

n

.e.s

ζ
)1

=
 95% CI,  

equation (4)

1 2 3 4 5 6 7 8 9 10 

2000 20 100 20 1.165 0.369 (0.443, 1.887) 0.859 0.192 (0.483, 1.236) 
50 10 1.698 0.759 (0.210, 3.186) 2.141 0.677 (0.814, 3.468) 

2009 20 100 20 1.188 0.376 (0.452, 1.925) 0.729 0.163 (0.410, 1.049) 
50 10 2.157 0.965 (0.266, 4.047) 2.199 0.695 (0.836, 3.561) 

Note: Estimates are based on the nominal average salaries in branches of the economy. 
 

Diagram A.2.Tj: Log-log rank-size plots for Tajikistan. 

 
 

Table A.2.Uz: Tail index estimates for Uzbekistan 

Years Sample 
size 

% of largest 
observations n RSζ

)
 

RS

RS

n

.e.s

ζ
)2

=
95% CI, 

equation (12) Hillζ
)

 
Hill

Hill

n

.e.s

ζ
)1

=
 95% CI,  

equation (4) 

1 2 3 4 5 6 7 8 9 10 

2000 20 100 20 1.640 0.517 (0.623, 2.656) 1.092 0.244 (0.613, 1.570) 
50 10 3.811 1.704 (0.470, 7.150) 3.175 1.004 (1.207, 5.142) 

2001 20 100 20 1.758 0.556 (0.668, 2.847) 1.140 0.255 (0.640, 1.639) 
50 10 4.652 2.080 (0.574, 8.729) 5.238 1.656 (1.991, 8.485) 

2002 20 100 20 1.702 0.538 (0.647, 2.757) 1.205 0.269 (0.677, 1.733) 
50 10 4.383 1.960 (0.541, 8.225) 4.350 1.376 (1.654, 7.046) 

2003 20 100 20 1.611 0.509 (0.612, 2.610) 1.202 0.269 (0.675, 1.728) 
50 10 3.121 1.396 (0.385, 5.856) 3.080 0.974 (1.171, 4.989) 

2004 20 100 20 1.338 0.423 (0.509, 2.167) 0.758 0.169 (0.426, 1.090) 
50 10 3.408 1.524 (0.421, 6.396) 3.479 1.100 (1.323, 5.635) 

2005 20 100 20 1.356 0.429 (0.516, 2.197) 0.706 0.158 (0.397, 1.016) 
50 10 3.119 1.395 (0.385, 5.852) 3.124 0.988 (1.188, 5.061) 

2006 20 100 20 1.418 0.448 (0.539, 2.297) 0.725 0.162 (0.407, 1.042) 
50 10 2.926 1.309 (0.361, 5.491) 2.978 0.942 (1.132, 4.824) 

Note: Estimates are based on the nominal average salaries in branches of the economy. 
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Table A.3. Weber-Fechner law: linear-log size-rank regressions (8)-(9). 

 

 

 

 

 

 

 

Note: Standard errors of the regression coefficients are given in brackets. The p-values of the coefficients 

are smaller than 0.00005. The p-value for R2 is smaller than 0.0000005; F(( R2 ) denotes the value of the 

corresponding Fisher statistics. 

   
Diagram A.3.W: Weber-Fechner law                         Diagram A.3.Ru: Weber-Fechner law  

                              for the World                                                                  for Russia 

 

 
World 

Russia Kazakhstan 
2008 2009 

a 

 

b 

 

R2 

F( R2 ) 

3.4834 

(0.0309) 

0.0145 

(0.0005) 

0.886 

779.35 

2.9984 

 (0.0353) 

0.0151 

 (0.0006) 

0.867 

659.91 

11.7659  

(0.0021) 

4.94E-05  

(6.92E-08) 

0.906 

510381.4 

6.0980 

(0.0553) 

0.0888 

(0.0025) 

0.972 

1227.06 

n 102 103 53096 37 
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Diagram A.3.Kz: Weber-Fechner law            Diagram A.3.Kg: Weber-Fechner law  

                                        for Kazakhstan                                                for Kyrgyzstan 

 
Diagram A.3.Tj: Weber-Fechner law for Tajikistan 
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Table A.4: Estimates for hierarchy of logarithms regression (8)-(9) with m=3:  

 

The following are approximations to the distribution of the worth in the data implied by the estimates in 

Table A.4: 

   2008: )))005138.0245859.0p(exp(exp(ex RankWorth ⋅−=   

             2009: )))008812.0162768.0p(exp(exp(ex RankWorth ⋅−= .12 

 

Table A.5.W: Semiparametric estimates of the Gini coefficient in the upper tails of the worth distribution 

in the World. 

Year 
Sample 

size RSG
)

 
RSG.e.s )  95% CI,  

equation (17) HillG
)

 
HillG.e.s )  95% CI,  

equation (18) 
1 2 3 4 5 6 7 8 

2008 102 0.311 0.057 (0.199, 0.422) 0.368 0.050 (0.270, 0.465) 

2009 103 0.346 0.065 (0.219, 0.474) 
 

0.421 0.059 
(0.306, 0.537) 

 

 
 

 

 

 

 

 
                                                            
12 Interpretation of such approximations obtained from the hierarchy of logarithms and their conclusions for income 
distributions is not yet clear and is left for further research. 

 World Note: Standard errors of the regression coefficients are 
given in brackets. The coefficients are significant if 
the significance level is above 0.00005. The p-value 
for R2 is smaller than 0.0000005; F(R2 ) denotes the 
value of the corresponding Fisher statistics. The form 
of the hierarchy of logarithms with the number of 
iterations m=3 provides the best fit among other 
choices for m considered in the analysis. 

2008 2009 
a 

 

b 

 

R2 

F( R2 ) 

0.2459 

(0.0054) 

−0.0051 

(9.18E-05) 

0.969 

3135.37 

0.1628 

(0.0128) 

−0.0088 

(0.0002) 

0.944 

1699.59 

n 102 103 
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Table A.5.Ru: Semiparametric estimates of the Gini coefficient in  

the upper tails of income distribution in Russia. 

Year, 
quarter 

Sample 
size, N 

% of largest 
observations n RSG

)
 

RSG.e.s )  95% CI,  
equation (17) HillG

)
 

HillG.e.s )  95% CI,  
equation (18) 

1 2 3 4 5 6 7 8 9 10 

2005,1 46974 
10 4697 0.205 0.005 (0.195, 0.215) 0.215 0.004 (0.207, 0.222) 
5 2349 0.204 0.007 (0.190, 0.218) 0.199 0.005 (0.189, 0.209) 
1 470 0.256 0.021 (0.214, 0.297) 0.190 0.010 (0.169, 0.210) 

2005,2 53132 
10 5313 0.210 0.005 (0.200, 0.219) 0.219 0.004 (0.212, 0.226) 
5 2656 0.207 0.007 (0.193, 0.220) 0.200 0.005 (0.191, 0.209) 
1 531 0.248 0.019 (0.211, 0.286) 0.195 0.010 (0.175, 0.215) 

2005,3 53129 
10 5313 0.211 0.005 (0.201, 0.221) 0.222 0.004 (0.214, 0.229) 
5 2656 0.210 0.007 (0.197, 0.224) 0.202 0.005 (0.193, 0.212) 
1 531 0.243 0.019 (0.207, 0.279) 0.221 0.012 (0.198, 0.244) 

2005,4 53135 
10 5313 0.196 0.005 (0.188, 0.205) 0.210 0.003 (0.203, 0.217) 
5 2656 0.194 0.006 (0.182, 0.207) 0.185 0.004 (0.177, 0.193) 
1 531 0.235 0.018 (0.200, 0.270) 0.187 0.010 (0.168, 0.206) 

2006,1 53093 
10 5309 0.200 0.005 (0.191, 0.209) 0.211 0.003 (0.204, 0.218) 
5 2655 0.202 0.007 (0.189, 0.215) 0.185 0.004 (0.177, 0.194) 
1 531 0.265 0.021 (0.225, 0.305) 0.189 0.010 (0.170, 0.208) 

2006,2 53094 
10 5309 0.210 0.005 (0.200, 0.220) 0.212 0.004 (0.206, 0.219) 
5 2655 0.215 0.007 (0.201, 0.229) 0.201 0.005 (0.191, 0.210) 
1 531 0.264 0.020 (0.224, 0.304) 0.209 0.011 (0.188, 0.231) 

2006,3 53089 
10 5309 0.200 0.005 (0.191, 0.210) 0.218 0.004 (0.211, 0.225) 
5 2655 0.194 0.006 (0.182, 0.207) 0.196 0.005 (0.187, 0.205) 
1 531 0.204 0.015 (0.175, 0.234) 0.184 0.009 (0.165, 0.202) 

2006,4 53072 
10 5309 0.183 0.004 (0.174, 0.191) 0.210 0.003 (0.203, 0.216) 
5 2655 0.167 0.005 (0.157, 0.178) 0.183 0.004 (0.174, 0.191) 
1 531 0.169 0.012 (0.145, 0.192) 0.147 0.007 (0.133, 0.161) 

2007,1 50589 
10 5059 0.198 0.005 (0.189, 0.208) 0.209 0.004 (0.202, 0.216) 
5 2530 0.198 0.007 (0.185, 0.211) 0.192 0.005 (0.183, 0.201) 
1 506 0.238 0.019 (0.202, 0.275) 0.212 0.011 (0.190, 0.235) 

2007,2 49884 
10 4988 0.193 0.005 (0.184, 0.202) 0.212 0.004 (0.205, 0.219) 
5 2500 0.181 0.006 (0.170, 0.193) 0.193 0.005 (0.184, 0.202) 
1 499 0.177 0.013 (0.151, 0.203) 0.165 0.009 (0.148, 0.182) 

2007,3 53104 
10 5310 0.207 0.005 (0.198, 0.217) 0.214 0.004 (0.207, 0.221) 
5 2655 0.208 0.007 (0.194, 0.222) 0.199 0.005 (0.190, 0.208) 
1 531 0.262 0.020 (0.222, 0.301) 0.182 0.009 (0.164, 0.201) 

2007,4 53096 
10 5310 0.205 0.005 (0.195, 0.214) 0.216 0.004 (0.209, 0.223) 
5 2655 0.202 0.007 (0.189, 0.215) 0.194 0.004 (0.185, 0.203) 
1 531 0.235 0.018 (0.200, 0.270) 0.205 0.011 (0.184, 0.226) 
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APPENDIX B: Frequency distributions and cdf's 

B.1. Frequency distributions 

   
              Diagram B.1.Ru: Russia                                           Diagram B.1.Kg: Kyrgyzstan 

 

 
Diagram B.1.Uz: Uzbekistan 
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B.2. Cdf's 

   
Diagram B.2.Ru: Russia                                    Diagram B.2.Kz: Kazakhstan 

   
Diagram B.2.Kg: Kyrgyzstan                             Diagram B.2.Uz: Uzbekistan 

 

 
Diagram B.1.TJ: Tajikistan 
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Table B.2.Ru: The Gini coefficient in Russia. 

Years 1992 1995 2000 2004 2005 2006 2007 2008 2009 
Gini 

coefficient 0,289 0,387 0,395 0,409 0,409 0,416 0,423 0,422 0,422 

Source: Rosstat, the Federal State Statistics Service of Russian Federation. 

 
Table B.2.Kz: The Gini coefficient in Kazakhstan 

 
Years 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 
Gini 

coefficient 0.319 0.338 0.347 0.332 0.307 0.339 0.328 0.315 0.305 0.304 0.312 0.309 0.288 0.267

Source: The Statistics Agency of Kazakhstan 
 
 

Table B.2.Uz: The Gini coefficient in Uzbekistan 
Years 2000 2001 2002 2003 2004 2005 2006 
Gini 

coefficient 0,423 0,415 0,423 0,441 0,416 0,402 0,382 

Note:  The estimates by M. Ibragimov using the data from the State Committee on Statistics of the 

Republic of Uzbekistan 

 
Table B.2.Kg: The Gini coefficient in Kyrgyzstan 

Years 2005 2006 2007 
Gini 

coefficient 
0,433 0,446 0,442 

Source: The State Statistics Committee of Kyrgyz Republic 
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APPENDIX MD: Income distribution and market demand:  

The case of heterogeneous preferences  

 

In recent years, a number of studies have focused on modeling income inequality using 

majorization relation (see, e.g., Marshall and Olkin, 1979) and applications of the latter concept 

to the problems in economics. The approach to the analysis of income inequality based on 

majorization which dates back to Lorenz (1905) has been used, among others, by Atkinson 

(1970), Dasgupta, Sen and Starrett (1973), Shorrocks (1983) and, more recently, Saposnik 

(1993). Using related concepts and methods, Lambert and Pfahler (1997) presented an analysis of 

the effects of income (re-)distribution on the market demand for a good or service. 

In Ibragimov and Ibragimov (2007), the authors applied majorization theory to study 

dependence of market demand elasticity on the inequality in income distribution among the 

consumers. However, in that work it is assumed that consumers' preferences are the same for 

given prices on goods independently of their income levels. In this note, we extend the results 

obtained in Ibragimov and Ibragimov (2007) to the case where consumers' preferences are 

heterogeneous and the condition on equality of individual demand functions does not necessarily 

hold. This case is more realistic because consumers' preferences are affected by a variety of 

different factors. 

Let there be K consumers and M goods in an economy. Denote by ),( kmk IPφ  the function of 

the kth consumer's demand on the mth good, by I =(I1,…,IK) the vector of incomes of the 

consumers and by P = (p1, ...,pM) the vector of prices on goods. 

Let Фт(Р,I)=∑ K
k 1= ),( kmk IPφ  be the function of market (aggregate) demand on good m and let 

em(I) = дlogФm(P,I)/ дlogpm stand for its own-price elasticity. Denote by Smk ⊂ R 1+m  the domain 

of definition of the function ),( kmk IPφ  and by Sm = {(P,I) = (P ,I1, . . . ,Ik)∈R KM + , (P,Ik)∈Smk, 

k=1,...,K} the domain of definition of the function Фт(Р,I),  m = 1 , … ,  M.  

According to the idea going back to Lorenz (1905) (see Marshall and Olkin, 1979), a 

vector )1(I = ),...,,( )1()1(
2

)1(
1 KIII  represents a more uniform distribution of the total income Y among 

K consumers than a vector )2(I = ),...,,( )2()2(
2

)2(
1 KIII   if ∑ )1(

][1 i
l
i I= ≤∑ )2(

][1 i
l
i I= , l=1,…, K-1, and 

∑ )1(
][1 i

K
i I= =∑ )2(

][1 i
K
i I= =Y, where )( j

iI , j = 1, 2, are the income levels of the ith consumer and 
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)(
][

)(
]2[

)(
]1[ ... j

K
jj III ≥≥≥  denote the components of the vectors )( jI , j=1, 2, in decreasing order (if the 

above conditions hold, it is said that the vector )1(I = ),...,,( )1()1(
2

)1(
1 KIII  is majorized by 

)2(I = ),...,,( )2()2(
2

)2(
1 KIII , written )2()1( II p ). 

A function f(I) is called Schur-convex (resp., Schur-concave) in I if 
)2()1( II p ⇒ (f( )1(I )≤f( )2(I )) (resp. )2()1( II p ⇒ (f( )1(I )≥f( )2(I )). 

 

Theorem MD.1 (i) Let the individual demand functions (фmk(P,Ik) be twice continuously 

differentiable and let, for all (P,I)∈Sm such that Ir≤Is, the following conditions hold: 

s

smr

r

rmr

I
) (P,I

I
) (P,I

∂
∂

≤
∂

∂ φφ      (MD.1) 

sm

smr

rm

rmr

Ip
) (P,I

Ip
) (P,I

∂∂
∂

≤
∂∂

∂ φφ 22

     (MD.2) 

where pm is the price of the mth good in consideration. Then the absolute value of the 

elasticity |em(I)| is Schur-concave in I on the set Sm. That is, the more non-uniform is the 

distribution o f  t h e  total income among consumers in the economy, the smaller is the 

elasticity o f  t h e  aggregate demand on the considered good by the absolute value. 

(ii) If in conditions (MD.1) and (MD.2) the inequality sign ≤ is replaced by ≥, then 

the absolute value of the elasticity |em(I)| is Schur-convex in I on Sm. That is, the more 

non-uniform is the distribution of the total income among the consumers, the larger is 

the elasticity o f  t h e  aggregate demand on the considered good by the absolute value. 

Proof. (i) Let gm(P,I)=∂Фт(Р,I)/∂pm=∑ K
k 1= д ),( kmk IPφ /дpm be the derivative of the 

function of aggregate demand on the mth good with respect to its price. If conditions (MD.1) and 

(MD.2) are satisfied, then the following inequalities hold: 

=
∂

Φ∂
−

∂
Φ∂
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s

m
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m
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I

IPII  
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∂
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∂
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=
∂

∂
−

∂
∂

− )),(),()((
s

m

r

m
sr I

IPg
I

IPgII  

0)),(),()((
22

≥
∂∂

∂
−

∂∂
∂

−
sm

ms

rm

mr
sr Ip

IP
Ip

IPII φφ . 

In addition, from the definition of the functions Φm(P,I)  and gm(P,I)  it follows that they are 

symmetric on the set Sm, that is, 

Φm(P, 
)1()1(

2
)1(

1 ,...,, KIII )=Φm(P, )1(
)(

)1(
)2(

)1(
)1( ,...,, KIII πππ ), 

gm(P, 
)1()1(

2
)1(

1 ,...,, KIII )=gm(P, )1(
)(

)1(
)2(

)1(
)1( ,...,, KIII πππ ) 

for all permutations π : {1,K}  →  {1,K}  of the set {1,K} . 

Consequently, according to Theorem 3.A.4 in Marshall and Olkin (1979), the functions 

Φm(P,I)  and gm(P,I)  are Schur-convex in I , that is, )2()1( II p  implies Фm(P, )1(I )≤Фm(P, )2(I ) 

and gm(P, )1(I )≤  gm(P, )2(I ). 

Since the function gm(P,I)  is non-positive, from )2()1( II p  it thus follows that 

),(
),(

),(
),(

)2(

)2(

)1(

)1(

IP
IPg

IP
IPg

m

m

m

m

Φ
≤

Φ
 

or, equivalently, 

)(
),(

),(
),(

),()( )2(
)2(

)2(
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)1( Ie

IP
p

p
IP

IP
p

p
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m
m =

Φ
⋅

∂
Φ∂

≤
Φ

⋅
∂

Φ∂
= . 

That is, )2()1( II p  implies |eт ( )2(I )|≤|eт ( )1(I )|, as claimed. 

(ii) If in conditions (MD.1) and (MD.2) the inequality sign ≤ is replaced by ≥ then the 

functions Фm(Р,I) and gm(P,I) are Schur-concave in I, that is, )2()1( II p  implies  

Фm(P, )1(I )≥Фm(P, )2(I ) and gm(P, )1(I )≥  gm(P, )2(I ). The rest of the arguments is completely 

similar to part (i). ■ 

Example MD.1. Suppose that the function of market demand for good m has the CES form: 

∑ ==Φ ),,(),( ][][1 ii
K
im IPIP αφ ,  where ][]2[]1[ ... KIII ≥≥≥ , 2/1...1 ][]2[]1[ >≥≥≥> Kααα , 

IPIP ),(),,( αψαφ =  and 









= ∑

=

−−−−
M

j
jm ppP

1

)1/()1/(1),( ααααψ  
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are the factors at the individual CES utility functions (that is, the consumers with a higher income 

I have a higher elasticity of substitution 1/(1-α)). We have 



















=∂∂ ∑

=

−−
M

j
mjmrrr

rrpppIIP
1
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Since the function ∑ −−
=

)1/(
1 )/( αα

mj
M
j pp  is increasing in a∈(0,1) for pj≥рт, j=1 , . . . ,M ,  j≠m ,  

we have that Фm(Р,I)  satisfies conditions (MD.1) if pj≥рт,  j =1 , . . . , M ,  j≠m. Further, since the 

function h(x) = ax2 -  x is increasing in x  for x≥1/(2α), we get that Фm(Р, I)  satisfies conditions 

(MD.2) if p j / p m≥ ii

i
Ki

M αα

α
/)1(

,...,1 )
12
1(max −

= −
−  for j=1 , . . . ,M ,  j≠m. From part (i) of Theorem 

MD.1 we obtain that, in this domain, an increase in income inequality leads to a decrease in the 

absolute value of the market demand elasticity. 

Similarly, in the above domain, the market demand function Фm(Р,I)= ][)(1 ),( ii
K
i IP∑ = αφ , where 

)()2()1( ... Kααα ≤≤≤  and ][]2[]1[ ... KIII ≥≥≥  are ordered in the opposite ways, satisfies conditions 

(MD.1) and (MD.2) with the inequality signs ≤  replaced by ≥ . From part (ii) of Theorem MD.1 

we conclude that, in this case, an increase in income inequality leads to an increase in the 

absolute value of the market demand elasticity. 

Example MD.2. Suppose that the function of market demand for good m has the form  

Фm(p, I)=∑ ),,,( ][1 iii
K
i Ip βαφ== , where ),,,( ][iii Ip βαφ =a I / ( I +βp) is a typical function on goods 

of first necessity, 0, >ii βα ,  i = 1 ,  . . . ,K ,  are some constants and, as in Example MD.1, 

][]2[]1[ ... KIII ≥≥≥ . It is not difficult to check that conditions (MD.1) and (MD.2) of part (i) of 

Theorem MD.1 are satisfied if and only if, for r≥s ,  

 

,)/()/( 2
][

2
][ pIpI ssssrrrr ββαββα +≤+  (MD.3) 

 

,)/()()/()( 3
][][

3
][][ pIpIpIpI ssssssrrrrrr βββαβββα +−≤+− . (MD.4) 
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Let r≥s. Assume that the vector I=(0,0 , … , 0) belongs to the domain of definition of Фт (P,I) .  

Suppose that conditions (MD.1) and (MD.2) of Theorem MD.1 are satisfied. Then from 

inequalities (MD.3) and (MD.4) for I=(0,0 ,…,0) it follows that 

α r  / α s  =  β r  /β s .      (MD.5) 

It is easy to see that condition (3) is thus equivalent to β r  / (I[r] + β r p) ≤  β s  / (I[s] + β s p) or  

I [ r ]  /  β r  ≥  I [ s ]  /  β s .  Since I [ r ]  ≤  I [ s ] ,  we conclude that, for conditions (MD.3) and (MD.4) to 

be satisfied it is necessary that (MD.5) holds for all r ≥ s and, in addition, for all r ≥ s, 

 

β r  ≤  β s ,  α r  ≤ α s  .  (MD.6) 

 

Suppose that the satiation level for good m is the same for all the consumers, that is, for  

p = 0  and all r, s, ),,,0(),,,0( sssrrr II βαφβαφ = . Then from the definition of the individual 

demand functions φ  and (MD.5) it follows that αr = αs and βr = βs for all r, s. Since, as is easy 

to see, from the above analysis it follows that inequalities (MD.6) are strict for I [ r ]  < I [ s ]  if 

conditions (MD.1) and (MD.2) are satisfied, we conclude that part (i) of Theorem MD.1 cannot 

hold. 

As above, we get that part (ii) of Theorem MD.1 holds if and only if (MD.3) and (MD.4) are 

satisfied with the inequality sign ≤  replaced by ≥. For I [ r ]  = I [ s ]  = 0 this implies conditions 

(MD.5). Assuming that the satiation level for good m is the same for all the consumers, we get 

that, as above, αr = αs and βr = βs for all r, s. Thus, it is easy to see that part (i) of Theorem 

MD.1 holds if and only if, for all r > s, 

 

(I[r] -  βp)/(I[ r ]  + βp)3 ≥  (I[s] -  βp)/(I[ s ]  + βp)3, (MD.7) 

 

where β = βr = βs. Similar to Example 1 in Ibragimov and Ibragimov (2007), it is not difficult to 

check that conditions (MD.7) are satisfied if I[K] ≥  2βp, that is if the income levels of all the 

consumers are not less than 2βp. 
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APPENDIX WF: Log-linear size-rank regressions and the  

Weber-Fechner law for income and wealth distributions 

 

As indicated in Section 4, empirical log-linear size-rank regressions  (13)-(14) can be 

interpreted in terms of the Weber-Fechner law that this paper applies to income and wealth data 

for the first time in the literature.  

While Zipf's laws with ζ=1 and, more generally, power laws (1) are inherent to 

communities and economic and financial markets (e.g., city and firm sizes and financial returns), 

the Weber-Fechner law is typical for living organisms. The Weber-Fechner law says that the 

perception will grow in arithmetic progression, when stimuli grow in geometric progression. This 

law was published in G. Fehner’s book “Elements of Psychophysics” in 1859. The Law was 

discovered in the early 19th century by E. Weber, a German physiologist and psychologist. He 

studied in detail the link between perception and stimuli when he determined how to change a 

stimulus for this change to be noticed by a person. It turned out that a ratio of stimulus change 

(intense) to its initial value is constant: 

b
S
S

=
∆

, 

where S is the stimulus measure, ∆S  is the stimulus change/intense, and b is Weber’s constant. 

Let t=1, …, N, be the rank of household income levels in the whole sample under 

consideration. Let us interpret the rank of income levels as a measure of perception that changes 

on an arithmetic progression with the step (the difference) equal to 1. Let us also interpret the 

income level Z(t) as the measure of a stimulus, since ranking has been made according to this 

parameter. Denote by ∆Z(t) = Z(t) − Z(t-1) , t=2,…, N, the change in the stimulus. Let us suppose 

that  

b
Z
∆Z

)t(

)t( = =const. 

Changing ∆Z(t) by a differential dZ(t), we have 

bZd
Z

dZ
(t)

(t)

(t) == log =const. 
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Solving the above differential equation, we obtain relations (8)-(9) that are also equivalent 

to  

             t
(t) AqZ = ,                            (WF.1)    

where )aexp(A = , )b(xpeq = . The parameter q may be interpreted as the denominator of the 

geometric progression that corresponds to the change in the “stimulus” Z(t) following the change 

in the rank in an arithmetic progression.  

 


